
Python-driven Map Automation

with Straight Line Diagrams

Vermont
Route

Logs

Esri DevSummit 2014

Kerry Alley

I’ll be talking about our new Route Log System which is how we produce Route Logs.

The message that I hope you take home from this presentation is that Python can do so
much more than just automate your map series, it can solve the problems that automation
problematic.

Before I go into the project itself, I’d like describe SLDs in general, and introduce you to an
actual Route Log

1

Straight Line Diagram

Straight-line

view of route

Measures

Additional

data

(Image from Esri ArcGIS Help pages)

A SLD provides a straight line view of a route and its associated data.

A SLD consists of the reference route with notable features (e.g. intersecting streets and
bridges), measures displayed as labels or as hatches like on a ruler, and any relevant data
parallel to the reference route corresponding to the portion of the route it aligns with.

BTW, with data in the right format, and a Production Mapping license, you too can make a
SLD like this with the Straight Line Diagram Wizard!!

Very effective way to view dissimilar data for the same stretch of road simultaneously.

2

And we have a lot of data!

We create route logs for all Federal Aid Highways, not the basic town highways

This is the Route Log for US-2 in Danville, VT
Point out: Base map, Locator map, Stick diagram, Other data frames, Bridge descriptions,
Header/Footer, Legends, Summary statistics.
Although the Mapping Unit maintains some of this data, much of it comes from other
divisions within the Agency.

If you really want a good look, I have full sized copies with me and can show you after the
talk.

3

Route Logs at VTrans
 1950’s

 The first Logs were drawn by
hand

 Developed during the building
of the Interstate System

 1980’s
 Logs converted to CADD using

Intergraph software

 1990’s
 The Route Log System

becomes defunct & Master
series maintained with hand
markups

 2006-2010
 Contractor developed

ArcGIS/VBA system. Also an
online version. Most users still
preferred CADD w/ markups.

We have a long Route Log history at VTrans, but a downside of rapidly changing technology
is the speed at which technology can become obsolete.
We were in desperate need of a new System without a clear solution

4

Development Goals & Priorities

 Reproduce CADD version’s layout and

functionality

 Automated

 Easily generate logs with current data

 Minimize need to independently maintain/update

data displayed on logs

 Evolvable… user needs and data change

 Low cost

But we knew what we wanted!

Many of the challenges faced during development were related to users wanting the layout
and functionality of the historic CADD Route Logs. We needed to create engineering-
looking tool with GIS data.

We did not have a solution until Esri’s Jeff Barrett created a tailor-made, Python-based map
automation system for generating Vermont Town Highway Maps. This system was proof
of concept and a programmer’s Rosetta Stone.

5

Development Goals & Priorities

 Reproduce CADD version’s layout and

functionality

 Automated

 Easily generate logs with current data

 Minimize need to independently maintain/update

data displayed on logs

 Evolvable… user needs and data change

 Low cost

Solution: Python/arcpy
I
arcpy

6

Key Components
 Data

 46 datasets: feature classes and event tables from SDE &

file geodatabases, shape files, Excel tables

 Map Document Template

 14 data frames

 90 layers (not including group layers)

 187 layout elements (75 text, 84 graphic…)

 Python Scripts & Script Tool

 Data preprocessing

 Map automation

Easy to modify!

Modification requires some

Confidence with programming

Now I’d like to describe the present system

7

Map Document

Here is a view of the template document. It’s never “empty.”

8

Script Tool

Here is the script tool used to drive the Route Log System.

The user has to select at least one town route code. Since there are about 2300 routes,
there’s the option of filtering the choices by Route # or by town.

When you hit OK, the PDFs appear with informative naming in an output folder.

9

Outline map automation scripts while showing this slide:

The map automation scripts change the mxd from one Route Log to the next.

Set base map (extent, rotation, highlight target route)
Update layer definition queries
Update text elements (header & footer info, bridge descriptions, total & functional class
mileage statistics)
Update SLD data frame extents
Behind the scenes:

Data driven: read data attributes, calculate values, build strings/tables
Some built-in redundancy for QA/QC purposes
Isolated segments of divided highway treated differently

10

Automation Script
 Set Base Map

 new extent, rotation, highlight target route

 Update layer definition queries

 Update text elements

 header & footer info, bridge descriptions, total & functional

class mileage statistics

 Update SLD data frame extents

 Behind the scenes:

 Data driven: read data attributes, calculate values, build strings

 Some built-in redundancy for QA/QC purposes

 Isolated segments of divided highway treated differently

11

Before I summarize what is happening in the data preprocessing scripts, I want to give you
a peek “under the hood” at the routes and measures I work with. It will make the data
preprocessing summary a bit more clear.

Now we’re getting to the fun stuff!

12

Route Feature Classes

Ghost Section
(another route

carries mileage)

A route feature class (the keystone of LRS) has an “built in” measuring system. Routes can
be created from road centerline features, or in the case of a SLD, from straight line features,
and measures can be defined however you want.

Even though its really only the linear measures that matters spatially with a SLD route, the
lines have to be put *somewhere* and have a length… so I put them along a line that starts
at coordinate (0,0) Vermont State Plane coordinates, and set their lengths equal to route
lengths in our records. So, the straight lines in the Vermont Route Logs are actually located
in NY!

If I simply used the measures in our existing LRS, the SLD would look like this, even with a
ghost section…. But I wanted it to look like this…

13

End-to-End Routes (ETE)

Here there is a gap in both the feature and the measurement hatches.

In the past two slides, the route reflects mileage accumulated across the state, so it is the
US-2 ETE route

14

Town Routes (TWN)

However, for practical purposes, the highway-related data associated with VT routes is
stored using town-based measures
Each differently colored segment is a different route. Each segment starts with measure 0
and connects nicely with upstream and downstream routes.
We already maintained both ETE and TWN map-view routes, although the TWN routes are
most widely used in the agency.

15

ETE, TWN, and Routelog Mileages

Vtrans data has TWN measures

SLD routes created using

RoutelogETE measures

This slide shows the Stick Diagram for a particular town-based route found along US-2 and
shows where it fits along US-2

Here you can compare the start and end measures according to the 4 different measuring
systems.

ETE measures >= TWN measures (they’re equal if the ETE route fits within a single town)

TWN and ETE Routelog measures are always greater than their non-Routelog counterparts
because Routelog measures increase across ghost sections as well as along the route
features.

And so you don’t think I’m doing all of this just for mathematical kicks, remember that data
is stored with TWN measures, Route Log layout depends on Routelog measures

16

Data Preprocessing Scripts

 Create local copies of all data in a file geodatabase

 Create Routelog LRS

 Straight line geometries

 Intermediate route feature class has RoutelogETE measures

 Final route feature class has TWN measures

 Convert TWN event measures to RoutelogETE

measures when necessary

 3 datasets: routes , functional class, and historic project tables

 Create boundary line features

 (can’t use line symbology to represent points)

 town, village, state/town ownership, etc.

Back to Data PreProcessing Scripts….
The final route feature class has town measures so that most data with twn measures does
not need to be converted.
Only 3 datasets need to be converted

17

Data Preprocessing Scripts

 Create station dataset, determine label offsets

 Determine intersection label offsets

 Transform historic crash locations to current LRS

 Create event layers (position features along the line

routes using dynamic segmentation and TWN

measures)

 Convert event layers to feature classes

 Dissolve roadwidth features for tidy rendering

I’ll tell you more about stations when I describe how the labels are offset

18

Challenges/Solutions

 Incorporating diverse data sources

 Event Layer instability

 Portability

 Precise control over extents & scales

 Table formatting

 Label overposting

 Ghost sections

Project Management

Automation

Scripts

Data Preprocessing

Scripts

Now back to highlighting some challenges and solutions that I haven’t already covered.

19

Project Management

 Entire project within root folder

 all data initially copied into LocalData.gdb

 MXD template has relative paths

 no SDE connections in template

 no event layers in template

 Event layers converted to feature classes

 Scripts have paths relative to root folder

Easy one first!
If there is network reorganization that affects the paths of data sources, only one script is
affected.

20

Bridge Description Table

 Table is a single string

assembled during

automation

 String includes Python and

ArcGIS formatting tags

In Python:
BridgeDescriptionElm.text = '%s <CLR red = "255">'%struc_categ

+ label + '</CLR>: ' + '\r\n'

+ struc_type + ' - ' + str(yr_built) + '\r\n'

In ArcMap text element:
Culvert <CLR red = "255">100</CLR>:

Culvert - 1986

21

Mileage Summary Tables

 Split events at page breaks (another pre-processing script)

 Summary Statistics (Analysis) Tool

 Python strings with formatting

 Monospace font

FuncClassElm.text = []

For each row:

FuncClassElm.text += '\n' + '{:<63}{:6}'.format('{:<8}{} -

{}'.format(fcrtid, funcl, funclDict[int(funcl)]), length_str)

Here is an example of a Functional Class Mileage Summary Table

In order to create this table, I had to split Functional Class events at page breaks and run
the event table through summary statistics
The table is a single string that grew line by line as it looped through the summary statistics
table.

The values are extracted from datasets, and the formatting is native to Python. This table is
using nested formatting.

22

Station Labels

 Copy all stations data to one table

 Add “offset” field

 Define proximity cutoff

 Consider records L to R

 Is current label too close to nearest

non-offset label to its left?

 If so, its offset = previous label’s

offset + 1

 L to R order of labels strictly

maintained

23

Intersection Labels

 Non-perpendicular intersection

labels have offsets (if possible)

 Label have offsets to avoid labels

to their left

 L to R order strictly maintained

 36 label scenarios depending on:

 Side of road

 Previous intersection’s angle

 Previous intersection’s offset type

 Current intersection’s angle

 14 label classes

Its not perfect, but does make a big difference.

24

1st Label 2nd Label

I’ll talk you through how the label class was determined for these two labels:
1st label – Standard non-perpendicular offset
2nd label – Standard offset would cause it to overlap with the previous label that has an
offset, but at least there is still room for it to shift slightly in that direction without causing
overlap.

Why bother with that shift? The script doesn’t know whether there will be another label
closely following the one it’s considering, so the shift could potentially provide needed
space as well as align the label with the intersection better.

I just have to make sure that the script assigning label class considers offsets that are the
same size as those set in the Label Classes.

25

Ghost Intersections

2008 Route Log

2014 Route Log

Ghost intersections are intersections that coincide with the beginning or end of a ghost
section.

The mile markers for these intersections correspond to two locations along the SLD
because the mile marker at the start of a ghost section is the same as the mile marker at
the end of the ghost section.

So where is the intersection rendered???

In this case, two intersections belong on the upstream end of the ghost section, and one
belongs on the downstream side. The linear referencing tools currently place them all at
the upstream location. ArcGIS 9.X placed them all at both locations.

I didn’t want to introduce minute errors into the data just to get some points to plot
downstream, so I flagged those points, and positioned those using the intermediate route
feature class based on routelog measures that are different at the ends of ghost sections.

26

Thanks!
VTrans Mapping Unit:

Johnathan Croft

Michael Trunzo

Sara Moulton

Gary Smith

David Narkewicz

Esri:

Jeff Barrett

Roads & Highways Team

Contact:

Kerry.Alley@state.vt.us

27

