
9/25/2023 – p.1

ARNOLD Workflow
1. Conduct rdsmall QA/QC, particularly:

a. TWN_LR
b. AOTMILES
c. Topology

2. Set up a new ARNOLD_YYYY folder in V:\Projects\Shared\Mapping\ARNOLD_AllRoadNetwork\
a. Copy the following script folders from the previous year’s folder:

ARNOLD_AutomationScripts and Scripts
b. Create a new File Geodatabase (recommended to make a new .gdb for each draft)
c. Some of the .lyr files from the previous year’s folder will also be helpful (especially

calibration point symbolization and labeling)
3. Update some scripts to reflect the new year and gdb output path (the “version”), these lines can

be found near the beginning of the following scripts.
a. ARNOLD.py
b. Flip_RDS_arcs_InMemory.py (this script is now called from ARNOLD.py)
c. ARNOLD_Calpts.py

i. In addition to year and version, also update the path to the closed ARNOLD
calpts file from which correctly calibrated calpts can be copied to replace the
“problem calpts” in the new draft…as long as those route features have not
changed.

d. ARNOLD_Calibrate.py
e. ARNOLD_PlanarizeAll.py
f. ARNOLD_PlanarizePrep.py (this script is called by ARNOLD_PlanarizeAll.py)

4. Run ARNOLD.py (includes the call to Flip_RDS_arcs_InMemory.py)
a. Creates uncalibrated versions of ARNOLD without forks and with open or closed loops
b. Creates a copy of input rdsmall features with all arcs flipped to match the direction of

digitization in the uncalibrated draft of ARNOLD
c. Now includes Flip_RDS_arcs_InMemory.py, which creates a copy of input rdsmall arcs

with all of the arcs flipped in the direction of increasing LRS measures
5. Refresh Python Shell (necessary when using Python 2.7 because of memory issues)
6. Run ARNOLD_Calpts.py

a. Determines the measures for each calpt according to its location along the route and
the sum of AOTMILES up to that point

b. Calpts from “problem routes” are automatically deleted from the output and replaced
by calpts from a previous version…as long as those route features have not been
changed

7. Run ARNOLD_Calibrate.py (includes calls to procedures in ARNOLD_PlanarizePrep.py)
a. Calibrates the local ARNOLD features (with open loops)
b. Add ARNOLD attributes (same as final schema)
c. Add and populate fields that keep track of the open and closed locations of the moving

vertices
d. With one copy: Close loops, creating final “dissolved” ARNOLD for VAMIS

9/25/2023 – p.2

i. Check to make sure that all route features are increasing with digitized
direction. Have to check “Ignore cases where consecutive vertices have the
same measure value” so that vertices at the beginning and end of ghost sections
(which have the same measures) are not flagged. (This isn’t a problem with
planarized features)

e. Keep another copy to be appended into ETE_LRS prepared by Johnathan
f. Prepare ETE_LRS for planarization

i. Add and Populate fields that keep track of the open and closed locations of the
moving vertices

g. Append local ARNOLD features into a renamed copy of ETE_LRS
8. Run ARNOLD_Planarize_All.py (Details still in script comments)

a. Use open-loop copies of both lrs_route_ete and local ARNOLD
b. Planarize and split loops at loop nodes, where they will be closed (eventually)
c. Close all loops
d. Re-calculate ARNOLD attributes that can change with planarization (i.e. measure-related

fields)
e. Check to make sure that all planarized route features are increasing with digitized

direction. Do NOT check “Ignore cases where consecutive vertices have the same
measure value”

9. Create a copy of ARNOLD that meets VAMIS requirements
a. As dissolved as possible, keeping only routes that have discontinuous mileage between

segments (e.g. westbound US-2) as multiple features/records per route.
10. Add and populate Road_Direction attribute for Maureen (Traffic Safety)

a. Use MasterRouteDefinition Table to obtain the direction for each ETE_LR route
b. Use Road_Direction.py script to calculate direction of local Arnold routes (use fully

dissolved/multipart routes for this step, and transfer directions to planarized ARNOLD
using a join on the route codes.

NOTE: Most of the steps above have additional details within the comments written in each of the
scripts. These comments generally explain what each section of each script does. See image of code at
the bottom of this script.

Possible disruptions to workflow:
1. Incomplete rdsmall QA/QC (depending on the issue, it is often easiest to start from scratch)
2. Forked (non-loop) route(s) found at the end of “Step 3” in ARNOLD.py (script is self checking,

and prints out number of forked routes found)
3. If any of the routes with “problem calpts” have been updated since ARNOLD was last created,

those calpts will have to be fixed manually instead of simply being replaced from a recent
version of ARNOLD.

9/25/2023 – p.3

4. Modification (or addition) of loop geometry so that the offset location of the opening/closing
loop vertex still intersects itself. This is more likely to occur with asymmetrical or narrow-necked
loops.

a. Currently there is one ETE_LR route (G-something) that needs to be calibrated manually
and left open for planarization, though this specific instance could be added to
MoveLastCord.py (this now has a hard-coded fix)

